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Abstract

Background/Objectives: Single-domain immunoglobulins are small protein modules with
specific affinities. Among them, the variable domains of heavy chains of heavy-chain-only
antibodies (VHH) as the antigen-binding fragment of heavy-chain-only antibodies (also
termed nanobodies) have been widely investigated for their applicability, e.g., therapeutics
and immunodiagnostics. However, despite their advantageous biochemical and biophys-
ical characteristics, protein aggregation throughout recombinant synthesis is a serious
drawback in the development of nanobodies with application perspectives. Therefore,
we aimed to develop a computational method to predict the aggregation propensity of
VHH antibodies for the selection of promising candidates in early discovery. Methods:
We employed a deep learning-based structure prediction for VHHSs and derived from it
likely biophysical and biochemical properties of the framework region 2 with relevance for
aggregation. A total of 106 nanobody variants were produced by recombinant expression
and characterized for their aggregation behavior using size exclusion chromatography
(SEC). Results: Quantitative characteristics of framework region 2 patches were combined
into a function that defines an aggregation score (AS) predicting the aggregation propen-
sities of VHH variants. AS was evaluated for its capability to forecast recombinant VHH
aggregation by experimentally studying VHH Fc-fusion proteins for their aggregation. We
observed a clear correlation between the calculated aggregation score and the actual ag-
gregation propensities of biochemically characterized VHHs Fc-fusion proteins. Moreover,
we implemented an easily accessible pipeline of software modules to design nanobodies
with desired solubility properties. Conclusions: Al-based prediction of VHH structures,
followed by analysis of framework region 2 properties, can be used to predict the aggrega-
tion propensities of VHHSs, providing a convenient and efficient tool for selecting stable
recombinant nanobodies.

Keywords: nanobodies; immunoglobulin domains; protein engineering; protein aggregation;
Al-based structure prediction

1. Introduction

Nanobodies are highly versatile and robust single-domain antibodies. They can be
used in a wide variety of applications [1], ranging from diagnostic applications like non-
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invasive imaging in vivo [2] to therapeutic utilization like in the case of Caplacizumab for
the treatment of acquired thrombotic thrombocytopenic purpura [3]. They are characterized
by favorable biophysical properties, such as high solubility, thermostability, and low
aggregation tendency [4]. Nevertheless, during processes such as humanization and affinity
maturation, aggregation can be a problem that affects rapid and efficient development [5-7].
Even though the variable domain of the heavy chain of heavy-chain-only antibodies (VHHs)
usually has a high sequence similarity to the human variable domain of heavy chains (VHs),
there are some strongly conserved differences, such as the highly conserved exchange of
hydrophobic to hydrophilic residues in framework region 2 (FR2) compared to human VHs.
In human VHs, FR2 participates in the VH:VL interface by interacting with the variable
domain of the light chain (VL). In contrast, the FR2 region of VHHs is exposed to the solvent,
and hydrophobic residues are replaced with more hydrophilic residues to increase solubility.
These exchanges concern V42, G49, L50, and W52, which are mostly exchanged for E, E, R,
and G/F. A few VHHs, about 10%, have a VGLW motif [5,8-10]. Conversion of the hallmark
residues FERF/FERG in FR2 often leads to impaired stability and expression [6,11]. Human
VHs that lack a light chain are usually prone to aggregation [12,13]. It has been shown
that engineering human VHs by changing the hallmark residues to camelid equivalents
improves their solubility and stability without a light chain [12,14]. These findings support
the hypothesis that FR2 plays a central role in VHH aggregation. Additionally, in about 10%
of all VHHs, W118, which is also part of the FR2 interdomain contact area, is exchanged
for an Arg as a consequence of an unusual D-] recombination [8,15]. This exchange was
proposed to enhance solubility and to improve stability in some cases [11,16,17]. This
residue is also located within the conserved immunoglobulin domain interface [11,18].
Another notable feature of most VHHs is an elongated Complementarity-Determining
Region 3 (CDR3) loop that is proposed to shield the FR2 interface and, thereby, prevent
aggregation [19]. Moreover, it is often stabilized by an additional non-canonical disulfide
bond with either CDR1 or CDR2, depending on the respective camelid species. This
additional disulfide bridge has been suggested to prevent aggregation [20].

To predict the aggregation tendencies of given proteins in general, AGGRESCAN3D
2.0 has been introduced to estimate protein aggregation propensities based on structural
information [21]. While it provides useful solubility estimates, it does not explicitly consider
the critical contribution of the FR2 region to nanobody aggregation. Predicting biophysical
properties, such as aggregation, remains a challenging task, and general tools like AGGRES-
CANS3D 2.0 are designed for a broad range of proteins, which can limit their specificity for
specialized proteins such as VHHs. Here, we focus on the solubility characteristics of im-
munoglobulin domains. As we hypothesize that the conserved FR2 region of VHH domains
represents a primary determinant of aggregation potential in the context of nanobodies, the
goal of this work is to develop a sequence-based method explicitly based on the FR2 region
characteristics for the prediction of nanobody aggregation propensities. By focusing on the
distinctive features of VHHs, this approach offers a strategy that complements existing
general-purpose aggregation prediction tools.

We employed a deep learning-based structure prediction as the foundation for analyz-
ing key aggregation determinants in the FR2 region, condensed into a scoring function to
estimate aggregation based on the VHH sequence. We recently pursued the development
of VHHs with various specificities and application potential [22,23]. Candidate nanobodies
were humanized by grafting the CDRs onto human frameworks with simultaneous ran-
dom variation of the Vernier residues that are known to direct the spatial orientation of
CDRs, followed by library screening for functional variants. The experimental findings on
aggregation behavior from these campaigns, extended by the results on nanobodies for
which quantitative aggregation data exist, were correlated with the calculated aggregation
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scores. Although focusing on only a small structural segment of the VHH, the outcome of
this process was superior in distinguishing aggregation-prone from soluble nanobodies to
the AGGRESCANSD process, which covers the structure of the entire protein.

Taken together, applying the presented aggregation score to just the FR2 regions
of VHHs allows for the prediction of their aggregation propensity from their respec-
tive sequences in a rational and fast manner. This facilitates VHH development by ex-
cluding aggregation-prone candidates from further studies, optimizing nanobody dis-
covery, e.g., during high-throughput screening of nanobody libraries obtained from
animal immunization.

2. Materials and Methods

2.1. Generation of VHH Libraries, Enrichment, and Selection of Binders by Fluorescence-Activated
Cell Sorting (FACS)

To obtain VHH-based binders from immune libraries, Bactrian camels were immu-
nized with the corresponding antigen. Yeast surface display (YSD) collections were gener-
ated for the identification of candidate VHHs. The number of independent transformants
for the immune libraries was in the range of 107-10°. In addition, synthetic YSD libraries for
VHH humanization and affinity maturation were generated by overlap extension PCR. The
theoretical diversities were below 108, and the number of transformants was also between
107 and 10°. Yeast library generation was conducted according to Benatuil et al. [24]. In
total, three Bactrian camels and one alpaca were immunized with five to six different
antigens each. Bactrian camel 1 was immunized with ROR1, and, subsequently, ROR1
binding VHHSs were selected by phage display, as described in Zhou et al. [22]. For Bactrian
camels 2 and 3 and alpaca 1, cDNA was synthesized using the extracted RNA. DNA coding
for VHHSs was enriched, as described in [25], and used for the generation of yeast surface
display libraries, which were sorted by fluorescence-activated cell sorting (FACS). The
libraries were subsequently enriched for binding over several rounds using FACS. Single
clones were tested individually for antigen binding by flow cytometry. DNA from yeast
clones was isolated using Zymoprep Yeast Plasmid Miniprep I (Zymo Research, Irvine, CA,
USA, Cat No: D2001) and retransformed into E. coli, followed by plasmid isolation using
the Wizard® Plus SV Miniprep DNA Purification System (Promega, Madison, WI, USA,
CAT No: A1460) and Sanger sequencing (Microsynth, Balgach, Switzerland).

2.2. Protein Preparation, Size Exclusion Chromatography (SEC) Analysis, and Quantification
of Aggregation

Codon-optimized DNA constructs were synthesized by Biolntron (Shanghai, China)
and cloned as VHH-hinge-CH2-CH3 fragments into a pCDNA3.4 mammalian expression
IgG vector downstream of a CMV promoter. The constructs were sequence-verified and
transfected into ExpiCHO cells (Thermo Fisher Scientific, Waltham, MA, USA, Cat. No.
A14527). The cells (6.0 x 10°) were mixed with 3.5 mL of homemade BioIntron electrolysis
solution and plasmid, electroporated, and cultured in 100 mL of OPM medium (Cat No.
P93059) at 37 °C, 120 rpm, 8% CO,. Sodium butyrate was added after 24 h, and the culture
continued for 6 days. Recombinant proteins were purified via protein A chromatography
(VDOBIOTCH, Suzhou, China, Cat No. HQ320827001L) and assessed for monomer purity
via SEC. An SEC analysis was conducted using an AKTA Pure 25 M1 protein purification
system (GE Healthcare, Chicago, IL, USA) with a Superdex 200 Increase 10/300 GL column
(GE Healthcare, Chicago, IL, USA Cat No: 28-9909-44). The column was soaked with 50 mL
of distilled water and equilibrated with 50 mL of mobile phase buffer (50 mM sodium
phosphate, 150 mM sodium chloride, pH 7.0) at 0.5 mL/min. Testing proteins, diluted to
25 uL in mobile phase buffer, were loaded onto the column, and the elution was monitored



Antibodies 2025, 14,73

40f21

spectrometrically at 280 nm. The area under the curve (AUC) was determined for the
different peaks in the chromatogram, and the fraction of monomeric protein was quantified.
For normalization, the behavior of one particular VHH showed complete precipitation, and
no measurable remaining soluble protein was exploited. The monomeric species value for
this VHH was set to 0%.

2.3. Humanization of VHHSs

Complementarity-determining regions (CDRs) of VHH clones were delineated using
a statistical approach for VHH-specific loop identification, as described by Melarkode
Vattekatte et al. [26]. To support rational humanization while preserving antigen-binding
function, Vernier residues—framework positions known to modulate the conformation of
CDR loops [27]—were identified based on structural homology to characterized VHHs and
informed by the established literature [11,28,29]. These residues were considered critical
for maintaining the native paratope geometry upon framework substitution. The closest
human germline variable heavy (VH) framework was determined via sequence alignment
using IgBLAST [30]. Human germline sequences with the highest identity to the camelid
VHHs were selected as templates for defining permissible amino acid substitutions at each
Vernier site. Residues were chosen to balance sequence humanization with preservation
of VHH-specific features, particularly in framework region 2, where hydrophilic camelid-
specific residues contribute to solubility and folding [31,32]. Degenerate oligonucleotides
encoding the designed amino acid diversity were used to generate humanized VHH li-
braries by PCR assembly. Yeast surface display (YSD) was employed to express the libraries
in Saccharomyces cerevisiae, taking advantage of eukaryotic secretory pathway processes
including disulfide bond formation and chaperone-assisted folding [33]. Functional se-
lection of properly folded and antigen-binding variants was carried out through iterative
rounds of fluorescence-activated cell sorting (FACS), allowing the enrichment of clones
with favorable binding and expression profiles.

2.4. In Silico Data Processing and Model Generation

Sequence Numbering and Alignment:

The amino acid sequences of VHH domains were numbered and aligned using the
IMGT scheme [34] via ANARCI (version 2024.05.21) [35]. Residues 39-55 were defined as
framework region 2 (FR2), and residue 118 as the first position of framework region 4 (FR4).
Collectively, these residues were designated the “former VH:VL interface”.

Structure Prediction: Structural modeling of the VHHs was performed using
NanoBodyBuilder2 [36], accessed through an online interface (https://opig.stats.ox.ac.
uk/webapps/sabdab-sabpred/sabpred/nanobodybuilder2/ (accessed on 11 July 2025)).
The modeling used ImmuneBuilder version 1.1.1. The predicted structures were down-
loaded in a PDB format for downstream analyses.

Structural Visualization and Feature Extraction: The modeled structures were analyzed
using Mol* Viewer (v3; https://molstar.org/viewer/ (accessed on 11 July 2025)) [37],
focusing on residues constituting the former interface (FR2 and residue 118).

2.5. Accessible Surface Area (ASA)

ASA values for residues 39-55 and 118 (Ai) were obtained using Mol*’s Residue
Properties feature, which computes ASA using the Shrake-Rupley algorithm [38] using the
default parameter settings (radius: 1.4 A; n-point: 100). The visualization tool allows for
residue-level interrogation by color-coding surface exposure and showing the ASA value
for selected residues. Each ASA value was multiplied by the corresponding hydropathy


https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabpred/nanobodybuilder2/
https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabpred/nanobodybuilder2/
https://molstar.org/viewer/

Antibodies 2025, 14,73

50f21

index based on the Wimley—White scale (Hi) [39]. The mean ASA-weighted hydropathy
score was calculated.

Hydrophobic Side-Chain Interaction Analysis: Intramolecular hydrophobic side-chain
interactions (hi) were analyzed using Mol* Viewer [34], with a cutoff distance of 4 A for
defining interactions. For selected residues, the number of hydrophobic interactions was
determined as the number of unobstructed paths between hydrophobic atoms, as described
by Sehnal et al. [37]. The mean number of hydrophobic interactions per residue at the
former VH:VL interface was then calculated.

Instability Index Calculation: The instability index for FR2 (residues 39-55) was
computed using Expasy ProtParam (https://web.expasy.org/protparam/ (accessed on 11
July 2025)). This index estimates protein stability by assessing the frequency of destabilizing
dipeptides and was used here as a proxy for local destabilization.

Automation of Aggregation Score Calculation: The described manual analysis pipeline
was later automated using the xyna.bio platform and is available for free academic use
with full documentation under xyna.bio/nanobodyAS.

Sequence Cluster Analysis: FR2 cluster analysis was performed using MMseqs2 via
the MPI Bioinformatics Toolkit (version: c552cce6¢3194c06bcObba84f04c4ef13d62f0a5). The
analysis was conducted with a minimum sequence identity of 0.8, a minimum alignment
coverage of 0.9, and the --slow-sensitive mode enabled [38-40]. Clusters containing fewer
than four sequences were discarded. Sequence logos were generated using WebLogo,
version 2.8.2 [41].

2.6. Statistics

Unless stated otherwise, all statistical analyses were performed using GraphPad Prism
(version 10.1.0; GraphPad Software, San Diego, CA, USA). To assess the homogeneity of
variances among groups with differing sample sizes, Levene’s test was employed. In cases
where the assumption of equal variances was met (p > 0.05), the Kruskal-Wallis test (a
non-parametric alternative to one-way ANOVA) was used to evaluate differences in group
medians. This approach was chosen due to the presence of certain groups’ deviations
from normal distribution characteristics. For post hoc pairwise comparisons, Dunn’s
multiple comparison test was applied to control for family-wise error rates and provide
adjusted p-values. This method allows for the robust evaluation of intergroup differences,
accounting for both group size and number. The statistical significance was defined as
p < 0.05 for all analyses.

Receiver operating characteristic (ROC) curves were generated using GraphPad Prism.
Precision—recall curves and the Youden index ] were calculated using MedCalc® (version
23.3.5; MedCalc Software Ltd., Ostend, Belgium).

The accuracy was calculated as follows:

true positive (TP) + true negative (TN)
positive (P) + negative(N)

accuracy =

Balanced accuracy, which provides a more reliable measure for imbalanced datasets,
was calculated as follows:
sensitivity 4 speci ficity
2

balanced accuracy =

where "
true positive (TP)

true positive (TP) + false negative

sensitivity =

true negative (TN)
true negative (TN) + false positive (FP)

specificity =
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Fp values were calculated as follows:

(14 B?) * true positive (TP)
1+ B2)  true positive (TP) + false postive (FP) + B? x false negative (FN')

Fp=

For the recall-focused analysis (8 > 1), a value of § = 2 was used, while for the precision-
focused analysis (B < 1), B = 0.5 was applied.

3. Results
3.1. Characterization of VHH-Targeting ROR1 and Determination of Their Aggregation Behavior

The starting point for this study was a project aimed at the discovery and humanization
of nanobody-targeting ROR1 (Receptor Tyrosine Kinase-like Orphan Receptor 1). After
immunization of a Bactrian camel with the IG-like domain of human ROR1, specific VHHs
were isolated, as described in work by Zhou et al. [22]. The two parental clones, VHH1
and VHH?2, which possessed an additional non-canonical disulfide bridge between CDR1
and CDR3, were chosen for humanization. They were reformatted for expression as Fc-
fusions, which were subsequently purified by protein A chromatography. The parental
clone VHH2, expressed as an Fc-fusion, did not significantly form aggregates. In contrast,
VHH1 VHH showed about 23% aggregation in the size exclusion chromatography (SEC)
analysis (Figure 1). For humanization, the human framework IGHV3-23 was used, and
synthetic libraries were generated with allowed back mutations to the camelid residues at
the Vernier positions [27]. Binding candidates were enriched using fluorescence-activated
cell sorting (FACS).

After humanization of VHH1, only one functional clone was identified. This clone,
VHHI1_LAS, retained target binding but showed increased aggregation. Unexpectedly
and not intentionally introduced during humanization, VHH1_LAS has a deletion in the
framework region 2 (FR2) at position 53. For further specifying aggregation determinants,
we reinserted a valine residue, which is found in human germline IGHV3-23, or intro-
duced an alanine residue at the deleted position. The resulting VHHs, VHH1_LAAS and
VHH1_LVAS, did not aggregate upon recombinant production. The same applies to a
variant in which the original alanine 54 in FR2 has been replaced by a valine, VHH1_LVS.
Interestingly, the deletion framework applied to the VHH2 (VHH2_LAS) clone showed no
aggregation. Likewise, when using IGHV3-66 as a different human acceptor framework
for humanization of VHHI, the resulting clone (IGHV3-66-CDRVHH1) with CDRs grafted
showed no aggregation. A clone (huVHH1) using the same IGHV3-66 framework for
Vernier residue optimization and affinity maturation by CDR randomization also showed
no aggregation. In conclusion, this set of variants only differs from each other by one
deletion and/or a few amino acid exchanges in framework residues while displaying a
broad range of aggregate formation (Figure 1).

3.2. Definition of Parameters Determining VHH Aggregation and Their Implementation to
Calculate a Newly Introduced Aggregation Score

Intrigued by the observation that small changes such as the replacement of an alanine
with a valine or the deletion/insertion of a single amino acid can have drastic effects on
aggregation behavior, the deep learning model NanoBodyBuilder2 [36] was used to model
the VHH structures aimed at identifying possible factors that may promote aggregation of
VHHs. The structures predicted suggested altered hydrophobicity characteristics of the
exposed FR2 surface, which is located below the CDR3 loop, as a possible aggregation
determinant (Figure S1). Hence, we focused on the FR2 structural patch, defined as the
region between sequence positions 39 and 55, according to IMGT numbering [34], also
previously associated with stability and aggregation propensities [19].
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clone FR1 FR2 FR3 FR4
VHH1 QVQLOESGGGSVQAGGSLKLSCTAS | MGWFRQAPGKEREEIAT | YADSVKGRFTFSQDKVKNTVYLQMNTLKPDDTGMYYC | GGQGTQVTVSS
VHH1_LAS EVQLLESGGGLVQPGGSLRLSCAAS | MGWFRQAPGKERELAS | YADSVKGRFTISRDNSKNTLYLQMNSLKAEDTAVYYC | RGQGTLVTVSS
VHH1_LVAS EVQLLESGGGLVQPGGSLRLSCAAS MGWFRQAPGKERELVAS | YADSVKGRFTISRDNSKNTLYLQMNSLKAEDTAVYYC RGQGTLVTVSS
VHH1_LAAS EVQLLESGGGLVQPGGSLRLSCAAS MGWFRQAPGKERELAAS | YADSVKGRFTISRDNSKNTLYLQMNSLKAEDTAVYYC RGQGTLVTVSS
VHH1_LVS EVQLLESGGGLVQPGGSLRLSCAAS MGWFRQAPGKERELVS YADSVKGRFTISRDNSKNTLYLQMNSLKAEDTAVYYC RGQGTLVTVSS
VHH2 QVQLQESGGGSVPAGGSLRLSCAAS | MGWFRQAPGKEREEVAS | YSDSVKGRFTISQDGSKNTLYLQLNSLKAEDTALYYC RGQGTQVTVSS
VHH2_LAS EVQLLESGGGLVQPGGSLRLSCAAS | MGWFRQAPGKERELAS | YADSVKGRFTISRDSSKNTLYLQMNSLKAEDTAVYYC | RGQGTLVTVSS
IGHV3-66-CDRVHH1 EVQLLESGGGLVPRGGSLRLSCTAS MGWFRQAPGKEREEIAT YADSVKGRFTISRDNSRNTLYLQMKTLRAEDTAVYYC WGQGTQVTVSS
huVHH1 EVQLLESGGGLVQPGGSLRLSCTAS MGWFRQAPGKEREEIAS YADSVKGRFTISRDKSRNTLYLQMNTLRAEDTAVYYC RGQGTQVTVSS
IGHV3-64-CDRVHH1 | EVQLVESGGGLVQPGGSLRLSCTAS | MGWFRQAPGKEREEIAT | YADSVKGRFTISRDNSRNTLYLQMKTLRAEDTAVYYC | GGQGTQVTVSS
c - - .
variant yield [mg/L] Kp [nM] SEC [%] T [°C]
VHH1 351 106 515
VHH1_LAS 131 46
VHH1_LVAS 495 100 58.5
VHH1_LAAS 468 96
VHH1_LVS 242 100 50.5
VHH2 387 2 99
VHH2_LAS 371 38 99
IGHV3-66-CDRVHH1 212 s 98
huVHH1 403 14 100 61
IGHV3-64-CDRVHH1 115 270 93

Figure 1. Size exclusion chromatography (SEC) analysis of VHHs expressed as Fc-fusions and
purified by protein A chromatography. (A) SEC chromatograms of different VHHs. Analyzed
were the camelid clones VHH1 and VHH?2, along with their corresponding humanized versions
using the IGHV3-23 framework with a deletion in FR2 (VHH1_LAS and VHH2_LAS). Additionally,
variants with reinserted residues (VHH1_LVAS, VHH1_LAAS) and a point mutation (VHH1_LVS)
were included. Humanized clones using the IGHV3-66 and IGHV3-64 frameworks (IGHV3-66-
CDRVHH]1, IGHV3-64-CDRVHH]1, and huVHH1) were also analyzed. Absorbance was detected
at 280 nm. (B) Sequences of the framework regions of the different VHHs are listed according to
IMGT numbering. (C) Overview of the biophysical properties of the expressed VHH Fc-fusions,
including yield (mg/L), dissociation constant (KD) for ROR1 binding measured by BLI, percentage of
monomeric species in SEC, and melting temperature (Tm) determined by a protein thermal shift assay
using SYPRO Orange. Suitable biophysical properties are highlighted in green, mediocre properties
in orange, and unsuitable properties in red.

Since hydrophobic solvent-accessible surface areas (SASs) significantly contribute
to aggregation propensity, we estimate the overall aggregation tendency as the product
of the exposed surface area and the corresponding amino acid hydrophobicity [40]. The
hydrophobicity of these surfaces can be determined by the Wimley—White hydrophobicity
scale [39], which quantifies the tendency of amino acid residues to associate with membrane
interfacial regions. We also analyzed intramolecular interactions, since leucine, which was
deleted in our humanized variant, seemed to have a stabilizing effect. We observed
that the amount of intramolecular hydrophobic interactions, which facilitate stabilization
of the hydrophobic core, was altered in aggregation-prone VHHs compared to variants
with low aggregation propensity. The aggregation-prone clones VHH1 and VHH1_LAS
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had lower amounts of stabilizing intramolecular interactions in FR2, thereby leaving
more conformational flexibility for the FR2 residues, rendering them more accessible for
intermolecular interactions. In addition to FR2, the residue at position 118, according to
IMGT numbering in FR4, involved in the VH:VL interface, was analyzed for its predicted
structural and biophysical properties (Figure 2) [11,18].

CDR3
CDR3

AN

FR2 + residue 118 FR2 + residue 118

hydrophobic ||  i— hydrophilic

Figure 2. Graphical representation of the framework region 2 (FR2) and residue 118. FR2 is composed
of residues 39 to 55, according to IMGT numbering. FR2 is structurally located below the CDR3 loop.
The region is highlighted according to the hydrophobicity of its residues: green for hydrophobic ones
and red for hydrophilic ones. A cartoon representation and a molecular surface representation were
generated using Mol* [37].

Based on these analyses, we developed an aggregation score (AS) function (Formula (1))
that considers three VHH properties: (I) the hydrophobicity of the conserved immunoglobulin
domain interaction interface (FR2 + residuel18), (II) the mean hydrophobic intramolecu-
lar interactions possible for each residue in a radius of 4 A of the contact interface (FR2 +
residuel18), and (III) the instability index of FR2. For calculation of term (I), the exposed
surface area for each FR2 residue and residue 118 was multiplied with the hydropathy of the
corresponding amino acid to calculate AixHi. Importantly, this term becomes smaller with
the increased hydrophobicity of the surface area. By analyzing the intramolecular interaction
(hi), summed up in term (II), information about the potential intermolecular hydrophobic
interactions is obtained if we assume that the hydrophobic interaction potential is limited
for each residue. Therefore, making intermolecular interactions less likely if the residue is
incorporated in multiple intramolecular interactions. The higher the number of stabilizing
interactions, the lower the potential of intermolecular interactions by the FR2 area, and the
higher this term. The third term (III) used for calculating the AS is the instability index (i-i) [42].
This parameter was included since it was reported that the composition of dipeptide pairs
within the primary structure of a given protein is significantly correlated with its stability.
Based on this finding, Guruprasad and coworkers calculated a weight value of instability for
each individual dipeptide. For the purpose of this work, and again focusing on the FR2 patch,
the instability index was calculated for all dipeptides in the FR2 of a given VHH. A higher
instability index indicates increased intrinsic instability; thus, the AS is proportional to the
reciprocal of i-i. The absolute value of the score is used in the final calculation to improve the
interpretability.
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IV (A x Hy) x 2Y0 b
Py L' DIWV (x;, yis1)

AggregationScore (AS) =

1n
I:EZMp&m

10
Il = T DIWV(xi, ]/i+1)

i=1
Ai: numerical value of the exposed surface area of residue I;
Hi: hydrophobicity of residue I;
hi: hydrophobic intramolecular interactions of residue I;
DIWV: dipeptide instability weight value.

3.3. The VHH Interface FR2 as an Aggregation Determinant for Recombinant
Nanobody Aggregation

We determined the aggregation score of the VHH2- and VHHI1-derived VHH variants
to see if these correlate with the observed aggregation in SEC. For the aggregating VHHs,
VHHI1 and VHH1_LAS, we observed lower ASs compared to the non-aggregating VHHs
(Figure 3A,B). VHHSs with more than 95% monomeric species in SEC had a score between
0.99 and 1.45, with an average score of 1.19. The VHH IGHV3-66-CDRVHH1, which had
93% of monomer species in SEC, had a score of 1.02. The highly aggregating VHHs VHH1
and VHH1_LAS had scores of 0.68 and 0.83, respectively, resulting in an average score of
0.78. All VHHs with a score higher than 1 showed more than 90% of monomer species,
whereas the two aggregating VHHSs had a score lower than 0.85. These results open up the
possibility of adapting AS thresholds to the requirements of a given selection process for
promising VHHs.

Motivated by this finding, we included 38 more ROR1-targeting VHHs, 48 in total,
from our clone collection, for which previously obtained aggregation data from SEC analysis
were available (Figure 3C). We observed an average score of 1.08 for the 32 VHHSs with
more than 95% of monomeric species in SEC, an average score of 0.86 for the 9 VHHSs with
monomeric species between 90 and 95%, and a score of 0.62 for the VHHSs with less than
90% of monomeric species. This resulted in a significant difference in VHHSs with more than
95% of monomeric species and those with less than 90% monomeric species (Figure 3D).
For example, a separation threshold of 1 can correctly classify 19 of the 32 VHHSs with more
than 95% of monomeric species, 5 of the 9 VHHs with 90-95% of monomeric species, and
none of the VHHSs with less than 90% of monomeric species.
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Figure 3. Aggregation propensities of ROR1-targeting VHHs in relation to their predicted score
obtained by the employment of Formula 1. (A) Plot showing the monomeric species in SEC on the
y-axis and the calculated aggregation score on the x-axis. The set consists of camelid VHH1 and VHH2
and humanized clones of those. VHHs with less than 90% of monomeric species are highlighted
in red, with values between 90 and 95% in orange, and above 95% in black. VHHSs showing more
than 5% aggregation have a score below 1. (B) List of ROR1 VHHSs with their measured monomeric
species in SEC and their calculated aggregation score. VHHSs with more than 95% monomeric species
are highlighted in green, between 90 and 95% in orange, and below 90% in red. (C) Plot showing the
monomeric species in SEC on the x-axis and the calculated score on the y-axis. The set consists of 48
«ROR1 VHHs. VHHs with less than 90% monomeric species are highlighted in red, with between
90 and 95% in orange, and above 95% in black. (D) Box plot of all 48 ROR1-targeting VHHSs, with
whiskers indicating the 10th to 90th percentiles. VHHs are grouped according to their monomeric
species content in SEC: <90% (n = 7); 90-95% (n = 9); >95% (n = 32). The significance was analyzed
using a Kruskal-Wallis test (** p < 0.01; ns p > 0.05).

3.4. The Aggregation Score as a Tool to Predict Aggregation Propensities in a Recombinant VHH
Collection-Targeting Antigen 2

To exclude a possible bias resulting from the consideration of VHHs directed against a
particular target, we wanted to evaluate the score function for another screening project,
which delivered VHHs directed against an unrelated target. The VHHs were obtained
from a different camelid immunization (Table S2). In this project, 15 VHHSs were isolated,
and 2 of those clones (1072 and c4) were humanized, resulting in 12 humanized variants
differing in their amino acids at the Vernier residues of the IGVH3-23 framework. Out of
these 27 variants, 19 had more than 95% of monomeric species in SEC, with an average AS
of 1.54. VHH 1063 with 91% monomeric species in SEC had an AS of 2.19, and seven VHHs
with less than 90% had AS between 0.12 and 0.89, with an average of 0.64. This resulted in
a significant difference between those with more than 95% and those with less than 90%
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(Figure 4A,B). Application of a threshold of 1 resulted in the coverage of 16 out of 19 VHHSs
with more than 95% and the inclusion of no VHH with less than 90% of monomeric species.
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Figure 4. (A) Aggregation score related to monomer content for a collection of antigen 2-targeting
VHHs. Plot showing the monomeric species in SEC on the x-axis and the calculated score on the
y-axis. The set consists of 27 antigen 2 VHHs. VHHSs with less than 90% of monomeric species are
highlighted in red and above 90% in black. (B) Box plot of all 27 antigen 2-targeting VHHSs, with
whiskers indicating the 10th to 90th percentiles. VHHs are grouped according to their monomeric
species content in SEC: <90% (n = 7); 90-95% (n = 1); >95% (n = 19). Significance was analyzed using
the Kruskal-Wallis test (* p < 0.05; ns p > 0.05). (C) Overview of the score of all 106 VHHSs analyzed
in this work in correlation to the measured monomeric content in SEC. (D) Box plot of 106 VHHs
with whiskers showing 10-90% percentile. VHHs are grouped according to their monomeric species
content in SEC: <90% (n = 25); 90-95% (n = 16); >95% (n = 65). The significance was analyzed using
the Kruskal-Wallis test (**** p < 0.0001; * p < 0.05).

To further evaluate if this method is generally suitable to categorize VHHs with
different aggregation propensities, the aggregation score was tested for its predictive per-
formance on 106 different VHHs in total, including both the above-introduced collections.
These 106 VHHSs were obtained from 4 different camelid immunizations (3 Bactrian camels
and 1 alpaca) as well as from synthetic libraries. A total of 65 VHHs had more than 95% of
monomeric species in SEC, with an average AS of 1.26. A total of 16 VHHs had between
90 and 95% of monomeric species and an average AS of 0.94. A total of 25 VHHs had
less than 90% of monomeric species in SEC, with an average AS of 0.71. The difference
between the VHHs with more than 95% and the other groups is significant (Figure 4C,D).
By applying a threshold of 1, 46 out of 65 VHHs with more than 95% of monomeric species,
8 out of 16 VHHSs with 90-95%, and 3 out of 25 VHHSs with less than 90% of monomeric
species would be selected. This would result in an 88% reduction of highly aggregating
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VHHs in the selected set, while retaining the vast majority of non-aggregating VHHs for
further studies. Additionally, we conducted a more comprehensive analysis of potential
thresholds (Figures S3-S5 and Tables S3 and S4). Depending on the dataset size and the
number of clones to select, either precision- or recall-focused thresholds can be applied.
Using a threshold of >0.89, corresponding to the Youden index ] and F0.5max, 61 out of
81 VHHSs with >90% of monomeric species and 4 out of 25 aggregation-prone VHHs would
be obtained, yielding an accuracy of 0.77 and a balanced accuracy of 0.80. A lower thresh-
old of >0.48, corresponding to Flmax, would obtain 78 out of 81 non-aggregation-prone
VHHs but also 19 out of 25 aggregation-prone VHHs, resulting in an accuracy of 0.79 and
a balanced accuracy of 0.60. For VHHs with >95% of monomeric species, a threshold of
>1.06, which corresponds to FO.5max, would obtain 43 out of 65 non-aggregation-prone
VHHs and 5 out of 41 aggregation-prone VHHs, corresponding to an accuracy of 0.75 and
a balanced accuracy of 0.76. These results indicate that higher thresholds favor precision
by reducing aggregation-prone VHHs, whereas lower thresholds favor recall by including
more non-aggregation-prone VHHSs, albeit with more false positives.

3.5. FR2 Sequence Cluster Analysis in Correlation with VHH Aggregation Propensity

To investigate the influence of the FR2 primary sequence composition on the pre-
dicted aggregation propensities, a cluster analysis for the FR2 sequences was performed.
For this purpose, MMseqs2 was used with a minimum sequence identity of 0.8 and a
minimum alignment coverage of 0.9 [41-43]. In total, four distinguishable clusters were
identified (Figure 5). VHHSs harboring three of these FR2 sequence clusters deliver calcu-
lated aggregation scores, which allow for the distinction between variants with high versus
low aggregation propensity. In contrast, cluster 4, which was characteristic for VHHSs
harboring the canonical VH-associated residues “VGLW”, was identified as the cluster
with the lowest aggregation score on average but contained variants with low aggregation
behavior (Figures 5C and S2). The reason for this unexpected discrepancy is currently
under investigation.

3.6. Superiority of the FR2-Restricted Aggregation Score for Nanobodies over Aggregation
Prediction Considering the Entire Protein

To further verify the predictive potential of the FR2 patch of nanobodies analyzed
by the presented aggregation score, we compared its performance with that of AGGRES-
CANS3D 2.0 [21].

Intergroup variance between the score values of the 106 VHHs with <90, 90-95, and
>95% of monomeric species was assessed but did not demonstrate significant heterogeneity,
as indicated by the Levene test (p = 0.153). Consequently, the Kruskal-Wallis test was
employed for intergroup comparison, as the distribution within the “Over 95%” group
deviated from normal distribution. Dunn’s multiple comparison test was applied, allowing
for statistically robust pairwise evaluation of group-wise differences.

The FR2-based aggregation score yielded a highly significant distinction between
VHHSs showing < 90% and >95% of monomeric species (Figures 3 and 4). In contrast, the
analogous comparison using AGGRESCANB3D 2.0 showed no significance (Figure S6). The
difference between the 90-95% and >95% groups, although small, remained statistically
significant applying the aggregation score presented in this work. Additionally, a more
rigorous statistical comparison was performed, including receiver operating characteristic
(ROC) curves, precision-recall curves, confusion matrices, and calculations of accuracy and
balanced accuracy at different thresholds, based on the Youden index J and various F3max
values (Figures S3-S5 and Tables S3 and S4). Overall, the aggregation score showed higher
accuracies and balanced accuracies, particularly for distinguishing VHHSs with at least 95%
of monomeric species.
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Figure 5. Clustering of VHHs according to their FR2 sequence composition. (A) FR2 sequence logo
from all 106 VHHs. Amino acids are colored according to their chemical properties: small polar
amino acids (G, S, T, C, Y) are shown in green; amide-containing polar amino acids (Q, N) are shown
in purple; basic amino acids (K, R, H) are shown in blue; acidic amino acids (D, E) are shown in
red; and hydrophobic amino acids (A, V, L, I, P, W, E, M) are shown in black [44,45]. (B) Sequence
logos of four FR2 clusters derived from groups comprising at least four individual VHHSs obtained
by MMseqs [41,42]. Cluster 1 consists of 69 VHHs, cluster 2 of 14 VHHs, cluster 3 of 5 VHHSs, and
cluster 4 of 7 VHHSs. (C) Plot showing the monomeric species in SEC on the x-axis and the calculated
score on the y-axis. VHHs of cluster 1 are highlighted in purple, cluster 2 in blue, cluster 3 in orange,
and cluster 4 in red.

Aggregation predictions via AGGRESCANS3D 2.0 showed that comparing the score
of whole VHH structures with and without inclusion of the FR2 regions (residues 39-55)
presents an average score shift of 7.8% (Figure S7). This minimal deviation suggests that
AGGRESCANSD 2.0 lacks sensitivity to the key contributions of the FR2 region and may
not effectively resolve its impact on aggregation propensity.

3.7. Application of the Aggregation Score to Predict Properties of Synthetic VHHs Based on the
Identical Framework

Our findings suggest that the aggregation score is also applicable to compare VHHs
comprising an identical framework but different CDRs. For instance, the studied VHHs
VHHI1_LAS and VHH2_LAS show notable differences in their aggregation behavior. Next,
we wanted to determine if the AS might also be applicable to synthetic libraries using a
fixed framework. For this purpose, we chose nanobody C5, targeting the RBD domain of
the spike protein of SARS-CoV-2 [46]. This VHH was obtained from a synthetic library and
showed aggregation and poor expression. After affinity maturation by CDR randomization,
a clone with improved affinity and expression properties, termed C5G2, was obtained [46].
C5G2 has the same framework as C5 and differs in the CDR regions. This clone showed
no aggregation in SEC. We compared the scores for the two VHHSs and observed that C5
had an AS of 0.66 and C5G2 of 0.99. By comparing the predicted structures, we noted that
the mutations in the CDRs affect the shielding of the hydrophobic residues in FR2 and
in position 118 (Figure 6). The CDR3 loop is predicted to more intensely interfere with
the aggregation determining the FR2 area and, thereby, prevent aggregation. This finding
suggests that the AS presented in this work is also applicable for synthetic libraries using a
fixed framework.
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Figure 6. Comparison of two synthetic clones, C5 and C5G2, comprising the identical framework.
(A) AS for the synthetic clone C5, which showed aggregation, and the affinity-matured clone C5G2,
which showed no aggregation. (B) Predicted structures for the clones C5 and C5G2. For FR2 and
residue 118, the hydrophobic residues are colored green, and the hydrophilic ones in red. Changes in
the CDR regions are highlighted in purple.

4. Discussion

Aggregation of proteins is a complex process influenced by various factors. We
investigated which parameters are suitable to predict aggregation of VHHs based on
their sequence.

Most notably, in contrast to previously published tools, such as AGGRESCANBSD 2.0,
which are based on entire protein 3D structure predictions, our approach highlights the
relevance of the FR2 region as a meaningful proxy for aggregation prediction for VHH
domains. Moreover, unlike AGGRESCAN3D 2.0, the aggregation score function introduced
in this work includes intramolecular interactions within the FR2. For these reasons, the
aggregation score is an efficient and rational device to identify aggregation-prone nanobody
candidates during the early discovery and development process.

CDR3 length, CDR3 charge, and the presence of an additional disulfide bridge have
been reported to have an impact on the aggregation of VHHSs [19,47-51]. Notably, no corre-
lation between CDR3 length and aggregation was observed for the set of VHHs analyzed
in this work (Figure S8). VHHs with additional disulfide bridges showed less aggregation
as well as camelid VHHSs. This is in line with reports from the literature showing that
the additional non-canonical disulfide bridge can stabilize the VHH [16]. However, these
parameters do not allow us to distinguish between aggregation-prone and stable VHHs in
an efficient manner. Therefore, we utilized deep learning-based structure predictions to
gain insight into putative biophysical properties, since we assumed that CDRs, particularly
long CD3 loops, could contribute to shielding hydrophobic patches in the FR2 region from
aggregate formation. We focused on the consensus intermolecular immunoglobulin inter-
action interface FR2 and developed a scoring function based on accessibility and shielding
of this surface region. By considering hydrophobicity, hydrophobic intramolecular interac-
tions, and an empirical instability index based on the dipeptide composition, we devised a
score function that was able to distinguish between VHHSs with high and low aggregation
propensity. In contrast, a multi-linear analysis of primary sequence-based parameters of
entire proteins did not yield a comparable distinction.

By analyzing FR2 sequence clusters for their relevance in this context, we noticed that
VHHs with the VGLW motif are an exception, since their aggregation behavior cannot
be predicted by the presented function. For all members of this group, a relatively low
aggregation score is obtained, which does not correlate with their actual aggregation
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behavior. Therefore, VHHSs belonging to that FR2 cluster should not be evaluated for
aggregation propensity with this model and, instead, should be analyzed experimentally.
The reason for the low correlation of aggregation score and actual aggregation behavior is
presently unclear and warrants further experimental validation, since our available dataset
for VHHs of this cluster, seven in total, is restricted. Structural methods, such as X-ray
crystallography, and biophysical approaches, such as nano differential scanning fluorimetry
(nanoDSF), as well as computational techniques, like molecular dynamics (MD) simulations
or AlphaFold Multimer modeling of multiple VHHSs, could provide new insights into this.

Furthermore, a small number of VHHs from other clusters are predicted to be
aggregation-prone and, despite that, showed low amounts of aggregation in the SEC
analysis. Possible reasons might be that the shielding by the CDR3 loop is not accurately
reflected in the predicted structure or that there are other stabilizing factors, which are not
considered in this model. VHHs harboring an additional disulfide bond tended to be less
aggregation-prone (Figure S8B), consistent with previous reports indicating that the non-
canonical disulfide bridge provides additional stabilization [16]. Incorporating a bonus in
the aggregation score calculation for the presence of an extra disulfide bridge could be con-
sidered for future predictive models. Further improvements to the model could be achieved
by integrating additional sequence-based properties of the CDR loops—particularly the
CDR3 loop—such as length, hydrophobicity, and charge distribution (e.g., charge patches)
based on amino acid composition. For example, we observed that some VHHSs with high
aggregation scores but substantial aggregation had particularly hydrophobic CDRs. Given
the challenges in accurately predicting the structure of CDR loops, especially the long and
diverse loops typical of VHHSs, achieving high accuracy using structural features alone may
be difficult. However, incorporating compositional and physicochemical properties offers a
strong potential to improve the model’s ability to distinguish between aggregation-prone
and stable VHHSs and represents a valuable direction for future development. For instance,
VHHs 294 and 248 had scores of 1.16 and 1.55, respectively, but only 71% and 85% of
monomeric species, as measured by SEC. A sequence analysis of the CDR loops revealed
that 248 has a relatively short, yet quite hydrophobic, CDR3 loop, while 294 features a
notably hydrophobic CDR2 loop. Short CDR loops might not provide sufficient shield-
ing of aggregation-prone regions, and hydrophobic patches within CDRs may further
promote aggregation.

Notably, all 106 VHHs included in this study stem from animal immunization or
humanization of those VHHSs, where some “quality control” occurs during their generation
in B cells, ensuring the selection of stable antibodies [52,53]. An alternative strategy
for (humanized) nanobody discovery relies on the generation of synthetic libraries with
randomized CDR sequences that are eventually screened by phage display or ribosomal
display [54,55]. We analyzed two synthetic clones for which the AS was markedly lower
in the case of the aggregation-prone VHH. However, a larger dataset needs to be tested
to evaluate whether our prediction tool for aggregation behavior is also applicable to
this class of VHHSs. Furthermore, aggregation was only investigated by SEC. Therefore,
additional orthogonal methods, such as dynamic light scattering (DLS), could be valuable
for cross-validation. Hydrophobic interaction chromatography, kinetic measurements of
VHH aggregation, and differential melting temperature analyses, as described in Kunz et al.,
might also be of interest [19]. Nevertheless, we show that for VHHSs obtained from animal
immunization that contain camelid or human framework sequences, the aggregation score
can be utilized in a screening project to eliminate potentially aggregation-prone VHHs,
therefore reducing time and resources in the early discovery and development process.

A central task for future work is to enhance the precision and accuracy of aggregation
predictions by the integration of further knowledge of key VHH domain dynamics based
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on molecular dynamics modeling. To this end, targeted molecular dynamic simulations,
in-depth data mining of the existing data, and the evaluation of various neuro-symbolic Al
models for improved classification are planned using the xyna.bio platform. The expansion
of the database with additional experimental and synthetic data is essential. Equally
important is the inclusion of de novo in silico nanobodies, which can be developed using
Al-based methods. These potential synthetic frameworks could then be systematically
evaluated. The current AS model is now freely available as a web server application on the
xyna.bio platform.

Supplementary Materials: The following supporting information can be downloaded at https:
/ /www.mdpi.com/article/10.3390/antib14030073/s1, Figure S1: Structural investigation of the VHH
region analog to the VH VL interface for different ROR1-targeting VHHs. Hydrophobic residues are
highlighted in green, and hydrophilic ones in red. VHH1_LAS and parental VHH1 were aggregation-
prone. Both VHHs have an exposed hydrophobic former VL interface. In contrast, this region is more
shielded for the VHH1_LVAS variant, which did not aggregate. Figure S2: Overview of different FR2
clusters. A. Plot showing the monomeric species in SEC on the x-axis and the calculated score on
the y-axis for cluster 1 (n = 33). B. Plot showing the monomeric species in SEC on the x-axis and the
calculated score on the y-axis for cluster 2 (n = 14). C. Plot showing the monomeric species in SEC on
the x-axis and the calculated score on the y-axis for cluster 3 (n = 5). D. Plot showing the monomeric
species in SEC on the x-axis and the calculated score on the y-axis for cluster 4 (n = 7). Figure S3:
Receiver operating characteristic (ROC) curve for aggregation score and AggreScan3D. Separation
into VHHs with >90% of monomeric species in SEC resulted in 81 positive VHHSs (p = 81) and 25
negative VHHSs (N = 25). Separation into VHHs with >95% of monomeric species in SEC resulted
in 65 positive VHHSs (p = 65) and 41 negative VHHs (N = 41). A. ROC curve of the aggregation
score for separation of VHHs with >90% of monomeric species in SEC. An area under the ROC
curve (AUROC) of 0.81 was obtained with p < 0.0001. A Youden index J of 0.59 was obtained. B.
ROC curve of aggregation score for separation of VHHs with > 95% of monomeric species in SEC.
An AUROC of 0.79 was obtained with p < 0.0001. A Youden index J of 0.52 was obtained. C. ROC
curve of AggreScan3D for the separation of VHHs with > 90% of monomeric species in SEC. An
AUROC of 0.65 was obtained with p = 0.0223. A Youden index J of 0.33 was obtained. D. ROC
curve of AggreScan3D for the separation of VHHs with > 95% of monomeric species in SEC. An
AUROC of 0.53 was obtained with p = 0.6015. A Youden index ] of 0.19 was obtained. Figure 54:
Precision-recall curves (PRC) for aggregation score and AggreScan3D. Separation into VHHs with
>90% of monomeric species in SEC resulted in 81 positive VHHs (p = 81) and 25 negative VHHs
(N =25). Separation into VHHs with >95% of monomeric species in SEC resulted in 65 positive
VHHs (p = 65) and 41 negative VHHSs (N = 41). A. PRC of the aggregation score for separation of
VHHs with >90% of monomeric species in SEC. An area under the precision-recall curve (AUPRC)
of 0.93 and an F1max of 0.88 was obtained. B. PRC of the aggregation score for separation of VHHs
with > 95% of monomeric species in SEC. An area under the precision—-recall curve (AUPRC) of
0.84 and an Flmax of 0.82 was obtained. C. PRC of the AggreScan3D for separation of VHHs with
>90% of monomeric species in SEC. An area under the precision-recall curve (AUPRC) of 0.84 and
an Flmax of 0.88 was obtained. D. PRC of the AggreScan3D for separation of VHHs with >95%
of monomeric species in SEC. An area under the precision—recall curve (AUPRC) of 0.63 and an
Flmax of 0.77 was obtained. Figure S5: Confusion matrix for different thresholds for aggregation
score and AggreScan3D. These thresholds were chosen based on the Youden index (J) from the
receiver operating characteristic (ROC) curve and the maximum F1, F0.5, and F2 values from the
precision-recall curve. Different 3 values were applied when calculating the maximum F value
to adjust the focus toward the recall sensitivity or precision sensitivity: 3 > 1 emphasizes recall,
while 3 <1 emphasizes precision. For a recall-oriented evaluation, a 3 value of 2 was selected; for a
precision-oriented evaluation, a 3 value of 0.5 was selected. For equal weighting of precision and
recall, a 3 value of 1 was selected. In Q1, the number of true positives (TPs) is displayed; in Q2,
false negatives (FNs); in Q3, false positives (FPs); and in Q4, true negatives (TNs). The matrices
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are color-coded, with green representing the optimal value (TP = P; TN = N; FP = 0; FN = 0). A.
Confusion matrices for the aggregation score for separating VHHs with > 90% of monomeric species
in SEC (p = 81; N = 25). By applying the threshold for the Youden index J (>0.89), an accuracy of
0.77 and a balanced accuracy of 0.8 were obtained. For the corresponding thresholds, for Flmax,
an accuracy of 0.79 and a balanced accuracy of 0.6; for F0.5max, an accuracy of 0.77 and a balanced
accuracy of 0.8; and for F2max, an accuracy of 0.77 and a balanced accuracy of 0.53 were obtained.
B. Confusion matrices for the AggreScan3D for separating VHHs with >90% of monomeric species
in SEC (p = 81; N = 25). By applying the threshold for the Youden index J (<—91), an accuracy of
0.76 and a balanced accuracy of 0.66 were obtained. For the corresponding thresholds for Fimax, an
accuracy of 0.76 and a balanced accuracy of 0.52; for F0.5max, an accuracy of 0.73 and a balanced
accuracy of 0.67; and for F2max, an accuracy of 0.76 and a balanced accuracy of 0.52 were obtained. C.
Confusion matrices for the aggregation score for separating VHHs with >95% of monomeric species
in SEC (p = 65; N = 41). By applying the threshold for the Youden index J (>0.89), an accuracy of
0.77 and a balanced accuracy of 0.75 were obtained. For the corresponding thresholds, for Flmax, an
accuracy of 0.75 and a balanced accuracy of 0.71; for F0.5max, an accuracy of 0.75 and a balanced
accuracy of 0.76; and for F2max, an accuracy of 0.65 and a balanced accuracy of 0.53 were obtained.
D. Confusion matrices for the AggreScan3D for separating VHHs with >95% of monomeric species
in SEC (p = 65; N = 41). By applying the threshold for the Youden index J (<—91), an accuracy of
0.65 and a balanced accuracy of 0.59 were obtained. For the corresponding thresholds, for Flmax, an
accuracy of 0.62 and a balanced accuracy of 0.51; for F0.5max, an accuracy of 0.65 and a balanced
accuracy of 0.59; and for F2max, an accuracy of 0.62 and a balanced accuracy of 0.51 were obtained.
Figure S6: Analysis of the whole VHH dataset by AggreScan3D 2.0. A. Plot showing the total score
on the x-axis and the monomeric species in SEC on the y-axis. B. Box plot of 106 VHHs with Whisker
showing the 10-90% percentile. VHHs are grouped according to their monomeric species content in
SEC: <90% (n = 25); 90-95% (n = 16); >95% (n = 65). The significance was analyzed using a one-way
Kruskal-Wallis test (**** p < 0.0001; *** p < 0.001; ** p < 0.01; p < 0.05; ns p > 0.05). Figure S7:
Relevance of the FR2 sequence patch for the prediction of VHH aggregation by AGGRESCAN3D 2.0.
Aggregation behavior of 106 full-length VHH sequences, correlated with aggregation propensities
predicted by AGGRESCANS3D 2.0, with (black) and without (green) the FR2 region (residues 39-55),
normalized using min—max normalization. Thresholds for 90% (light red) and 95% (red) monomeric
species, as determined by size exclusion chromatography (SEC), are indicated. Exclusion of the FR2
region results in an average aggregation score shift of 7.8%. Figure S8: Impact of CDR3 length, the
presence of non-canonical disulfide bridge, and humanization on aggregation behavior of VHHSs. A.
Plot showing the monomeric species in SEC on the y-axis and the CDR3 length on the x-axis. No
significant correlation was observed with a Pearson coefficient of 0.14. B. Scatter plot comparing
the aggregation for VHHs with and without non-canonical disulfide bridges. A total of 54 VHHs
had an additional disulfide bridge and an average of 93.4% monomeric species in SEC, whereas
52 VHHs had no additional disulfide bridge and had on average 81.1% monomeric species in SEC.
C. Scatter plot comparing the aggregation for VHHs that are humanized or camelid. A total of 36
VHHs were humanized and showed on average 79.9% monomeric species in SEC, whereas 70 VHHs
were not humanized and showed on average 91.2% monomeric species in SEC. The significance
was analyzed using an unpaired f-test (*** p < 0.001; ** p < 0.01; p < 0.05; ns p > 0.05). Table S1:
Origin, monomeric species measured in SEC, and calculated score for ROR1-targeting VHHSs. Table
52: Origin, monomeric species measured by SEC, and calculated score for VHH-targeting antigen 2.
Table S3: Summary of statistical metrics for separating VHHs with >90% of monomeric species in
SEC (p = 81; N = 25) comparing aggregation score and AggreScan3D. Table S4: Summary of statistical
metrics for separating VHHs with >95% of monomeric species in SEC (p = 65; N = 41) comparing
aggregation score and AggreScan3D.
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Abbreviation Full Term

A3D AGGRESCANS3D 2.0

Al Artificial Intelligence

Ai Accessible Surface Area of Residue i
AS Aggregation Score

ASA Accessible Surface Area

BLI Bio-Layer Interferometry

cDNA Complementary DNA

CDR Complementarity-Determining Region
DNA Deoxyribonucleic Acid

E. coli Escherichia coli

FACS Fluorescence-Activated Cell Sorting
Fc Fragment Crystallizable Region

FN False Negative

FP False Positive

FR Framework Region

FR2 Framework Region 2

FR4 Framework Region 4

GL column Gel Filtration Column (Superdex 200 Increase 10/300 GL)
Hi Hydropathy Index of Residue i

hi Hydrophobic Interactions of Residue i
Ig Immunoglobulin

IgBLAST Immunoglobulin Basic Local Alignment Search Tool
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IGHV Immunoglobulin Heavy Variable
i-i Instability Index
IMGT International InMunoGeneTics Information System
IMGT numbering International InMunoGeneTics Information System Numbering Scheme
nanoDSF Nano Differential Scanning Fluorimetry
OPM medium Optimized Protein Medium
PCR Polymerase Chain Reaction
PDB Protein Data Bank
ROR1 Receptor Tyrosine Kinase-like Orphan Receptor 1
SEC Size Exclusion Chromatography
TN True Negative
TP True Positive
VH Variable Domain of Heavy Chain
VH:VL Variable Heavy Chain to Variable Light Chain Interface
VHH Variable Domain of Heavy Chain of Heavy-Chain-Only
Antibodies (Nanobody)
VL Variable Domain of Light Chain
YSD Yeast Surface Display
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