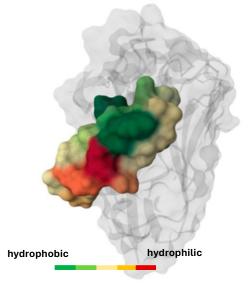
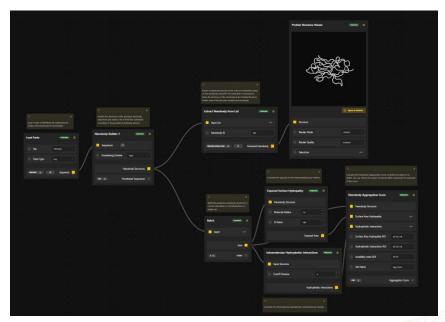
xyna.bio Case Study | Nanobody Engineering

In silico VHH Aggregation Prediction


Nanobodies are single-domain antibody fragments with strong therapeutic potential but are often limited by aggregation-prone framework residues. Addressing these hotspots is essential to improve stability, solubility, and overall developability in the context of rational nanobody engineering strategies.

The xyna.bio Nanobody Aggregation Pipeline implements the sequence-based scoring framework of Geyer et al. 2025, with a particular focus on FR2 region hotspots.

The pipeline integrates residue-level analyses of:


- Exposed surface hydropathy
- · Intramolecular hydrophobic interactions
- Instability index from FR2 composition

This scoring system employs a hybrid approach, integrating sequence- and structure-derived parameters for a more holistic prediction of aggregation risk. These descriptors are merged into a unified aggregation score, enabling early candidate prioritization and design directly from sequence data, presenting only the initial step toward an Al-driven *in silico* VHH optimization platform on xyna.bio.

3D structure prediction of a VHH sequence with the key FR2 region highlighted. Residues here are prone to drive aggregation behavior, with a major characteristic being residue hydropathy.

Adapted from Geyer et al. 2025.

Explore the xyna.bio Nanobody Aggregation Score pipeline at www.xyna.bio.